

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Vehicular Trip Generation Modelling in Maiduguri Metropolis

I Abdullah^{*1}, U Tsoho², A. Saminu³, H Garba⁴

^{*1,2} Department of civil Engineering, Nigerian Defence Academy, Kaduna

abuuthman67@yahoo.com

Abstract

The purpose of the trip and modeling process is to identify those meaningful determinants of trip making behavior, and express their effect in mathematical way so that they can be used with confidence as a predictive tool. In the case of this study, data was collected through questionnaires to the various household in the study area. Two zones, namely-: State low-cost and Moduganari in Maiduguri Metropolitan Council. Thirty (30) households were interviewed in the state low-cost. Thereby extending the result collected over the whole houses in the study area. Similarly in the other zone seventeen (17) houses were considered later on it extended to the whole area. In state low-cost zone (2424) number of person trips per day was estimated. In Moduganari (4027) number of person trips per day was estimated. Of the various models of trip generation model, regression analysis was adapted for this work.

Introduction

Transportation has a very important role to play in general development of the country and especially in its economic development. It has been described as the vein and arterial for the flow of the economy of the Nation. In a developing country like Nigeria the goal of industrial development can be achieved through an efficient transportation system. Our social, cultural and political institutions can be built up and life of the people in general can be enriched through efficient transportation systems. Maiduguri being the capital state of Borno located within the northern part of the country and is presently witnessing rapid growth in population, economic activity, vehicular ownership and hence rapid traffic growth. Increasing urbanization gives rise to vexing problems of congestion. If metropolitan areas are to grow and prosper, it will be imperative to plan and build vast new facilities for public and private transport. These, as well as existing resources must be operated, so as to provide the largest possible free flow of traffic. But if a reasonable level of amenity is to be maintained, the added facilities must be planned to make a sparing, efficient use of land, convenient to uses, and to make a positive esthetic contribution to the environment. Transportation facilities are the basic requirement for community growth and development. With the huge capital investment required to finance urban projects of all kinds, the consequences of not planning have became more acute than ever, successful solutions to the complex mobility problems confronting urban areas throughout the nation require the full energies and imagination of many professionals, but

particularly of the traffic engineer. Transportation in general and particularly highway transport play an essential role in the life of any communication today. Good highways transport facilities are the result of sound planning. It is now being recognized that transport planning cannot be and must not be isolated from land use planning. Also when planning for the future, account must be taken for the vehicles in which people wish to travel and move their goods. In recent years, planners have developed methodologies for estimating the distribution of future traffic over an entire transportation network. These procedures have been used for both urban and statewide. Systems, involve the use of computer simulation programme comprised typically of five types of models:

- 1. Land use
- 2. Trip distribution
- 3. Trip generation
- 4. Traffic assignment
- 5. Model split

The models are mathematical equations and procedures that collectively relate travel patterns to land use, demographic characteristics, and parameters of the transportation system. The models are developed and "calibrated" for a given study area so as to reproduce existing travel patterns as determined from actual count. Assuming the basic relationships between travel, land use, and socio-economic characterics remain constant over time, planners use the models to evaluate future alternative land use and transportation system (Pignataro L, J 1973). Among the five models mentioned above, the trip generation model will be used for these analalysis of result.

Trip Genereation Models

Trip generation models are concerned with the estimation of the number of trips into and out of various traffic zones. This is based on the principle that land use generate trips, and that the number and type of "from home" trip is influenced by socioeconomic variables such as car ownership or availability, house-hold income and size. occupational status, household composition e.g. no of workers per household. As may be gathered from the above, the number of variables considered to exert a casual effect on trip generation can be very great (Hobs F, D 1973). The traffic analyst has a choice of these methods of developing trip and models:

- 1) REGRESSION ANALYSIS METHOD
- 2) CATEGORY ANALYSIS METHOD

3) EXPANSION FACTOR METHOD

Aim and Objectives of the Study

The aim and objectives of the study is divided into the following phases:

- 1) Inventories of the main traffic facilities, public transport services, present and future land uses, and appropriate population and economic data.
- 2) The determination of the existing interzonal travel pattern, and the factors which control them.
- 3) The determination of the manner in which the travel growth characteristics of individual zones interact and affect future travel distributions between zones.

Scope of the Project

The scope of the project is to carry out a survey of vehicular trip, household, in some selected areas in Maiduguri metropolis, taking into considerations of the attracted areas such as commercial centers. A questioner was sent to the selected areas so that all the information required is filled up appropriately. The information is then used to generate trip produced by using some mathematical relationship.

Limitation of Work

The work is limited to Maiduguri metropolis for interzonal trips.

Methodology

Data Collection And Analysis

Data was collected from two areas within the metropolis in state low cost and moduganari in Maiduguri metropolis. These data will be analyzed to calculate the future trip, by understanding the reason behind a particular. The map of the location of study area is shown in the figure below.

Figure: Map of Maiduguri Metropolis

Trip Generation Data

Trip generation is the allocation of trips associated with the traffic zone. It normally consist of daily trips produced by residents in that zone and for the same zone the number of daily trips attracted to that zone. Trip generation is a term used in the transportation planning to cover the field of predicting the future number of trip ends in a given area. The objective of the generation stage is to understand the reason behind a particular trip making behavior and to produce mathematical relationships to synthesize the making pattern on the basis of observed trips, land-use and household characteristics. Transportation studies have shown that 80 to 90 percent of all trips made by residents of urban areas originates or ends at home (Hobbs T, D 1973) Residential land use therefore is a highly important trip generator. For this reason, and also because it exhibits a predictable pattern much of the research on trip generation has been obtained by making a home interview questioning. which was distributed to the various household.

Multiple Linear Regression Analysis

The multiple linear regression analysis has been used in the majority of transport demand studies in the past. The technique is a statistical one most often used to derive estimate of future trip generation, where two or more independent variables are suspected of simultaneously affecting the amount of travel. This technique measures the separate influence of each factor acting in association with other factors. The aim of the analysis is to produce from the traffic, land used and socio-economic data an equation of the following form: $Y=a_0 + a_1X_1 + a_2X_2 + ---- + an X_n$, where Y= a measure of the change in the number of household occurring in a specified forecast time interval starting from the time

http://www.ijesrt.com

m (C) International Journal of Engineering Sciences & Research Technology [1514-1523] for which the latest data are available. X_1, X_2 ----- X_n = independent variables, $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n = \text{regression}$ coefficients In a typical regression analysis, the given data relates the present day values of the dependent variables (Y) and the independent variables (X----Xn) for all zones of the area under study(Salter 1974). The equation thus developed is used for determining the future value of trip knowing the estimated future values of the independent variables. By considering the data collected in the two zones of study, the dependent variables and independent variable are related to one another in order to obtain the regression analysis equation. The observed data in table 1 and 2 were use in MINI TABR14 for the regression analysis equation. From fig. in table 1 the dependent variables Y is defined as Y_1 , which is the total trip generated at a house in a day. The independent variables are: $NP_1 = No.$ of person in household, $AA_1 = Average Age$, $IN_1 = Total income$ of the house hold and AT1 =Total time in minute, similarly same technique is applied to the second zone. The depended variable Y in Table 2 is defined as: Y_2 = total trip generated at house in a day, NP_2 = No. of person in house hold, $AA_2 = Average Age$, $IN_2 = Total$ income of the house hold and $AT_2 =$ Total time in minute.

Assumptions in Multiple Linear Regression

The regression analysis is based on the following important assumptions:

- I. All the variables are independent of each others:
- II. All the variables are normally distributed
- III. All variables are continuous
- IV. A linear relationship exists between the dependent variable and the independent variables
- V. Influence of independent variables is additive, is the inclusion of each variable in the equation contributes a district portion of the trip numbers.

It is however, difficult to ensure that the basic assumptions are satisfied in most of the trip generation studies. The so called independent variables in the regression equation are not truly independent of each other, and some sort of correlation normally exists among them.

The Likely Sources of Error May Be

- a) Errors in the determination of the existing values of the independent variables owing to inaccuracy or bias in the transportation survey.
- b) Errors in the determination of the existing values of the dependent variables, also as a result of in accuracy or bias in the transportation survey. Although this may be

detected and corrected by adequate screen line checks.

- c) Errors in the regression obtained owing to the scatter of the individual values and the inadequacy of data.
- d) Difficulties in the prediction of future values of independent variables for the future estimate of the independent variables.

If all the factors influencing the pattern of movement areas were correctly identified, then it might be expected that trip generation equations obtained in one survey would be applicable to other survey in a giving environment.

Analysis of Result

The Multiple Regression Analysis Method

The result obtained from the questioners in the two study zone was obtained by imputing the data in a computer programme which automatically and speeding carry out the extensive calculation required by the process as follows: ZONE 1

MTB > regress	c8 4 c9 c10 c11 c12
The regression	anunting is

THE TEBLESSI	on equation	12						
$Y_1 = 5.34 + 0.000$	237NP1- 0.0	741 AA1	- 0.0000	01 IN ₁ - 0	.0504 AT	I		
Predictor	Coef		St.c	dev	t-1	atio		P
Constant	5.342		1.1	55	4.	62		0.000
NP1	0.236	71	0.0	5831	4	.06		0.000
AA	-0.07	410	0.0	2429	-3	.05		0.005
IN1	-0.00	000086	0.0	0000106	-0	.81		0.425
AT1	-0.05	035	0.0	3688	-1	.37		0.184
S = 1.142 R = Analysis of v	sq = 58.3% ariance	R-sq	(adj) = 5	51.6%				
SOURCE	DF	SS		MS		F		P
Regression	4	45.568		11.392		8.74		0.000
Error	25	32.599		1.304				
Total	29	78.167						
SOURCE DF	SEQ SS							
NP1	1	26.898						
AAI	1	14.840						
IN ₁	1	1.399						
AT ₁	1	2.431						
Unusual Obser	vations							
Obs.	NP1		Y1	Fit	St.dev.	Fit. Resid	lual	St. Resid
3	13.0		3.000	5.096	0.856	-2.096	-2.7	7RX
5	11.0		1.000	3.650	0.416	-2.650	-2.4	9R
6	16.0		8.000	5.830	0.523	2.170	2.14	4R
10	3.0		3.000	1.406	0.884	1,594	2.20	DRX

R denotes an obs. With a large st. resid.

X denotes an obs. Whose X value gives it large influence.

(C) International Journal of Engineering Sciences & Research Technology [1514-1523]

ISSN: 2277-9655

							Unusual	Observ	ation							
SUBC> Printer.							Obs.	AA,	Y,	Fit	S.tdev.	Fit. Resi	dual	S	t. Resid	
							6	29.0	8.000	3.781	0.263	4.219		2	2.98R	
Analysis of Variance	e															
SOURCE	DF		SS	MS	F	Ρ	R denote	s an ob	os. With a la	irge <u>st</u> . re	sid.					
Regression	4	1	5.679	1.420	0.95	5 0.467	MTB > r	egressio	on c8 1 c11							
Error	1	12	17.851	1.488			The regr	ession e	equation is							
Total	1	16	23.529				Y ₁ = 3.90	-0.000	001 IN1							
SOURCE	DF		S	Q SS			Predicto	Coef	f	St.dev		t-ratio		Р		
NPi	1	L		3.490			Constant	3.901	8	0.3438		11.35		0	000	
AA1	1	L_2		2.133			INz	-0.0000	00065	0.0000	0152	-0.43		0	.673	
IN1	1	L		0.020												
AT ₁	1	1		0.036			S= 1.665		R-sq = 0.6	5%	R-sq (adj) = 0.0%				
MTB> regression	equation i	s					Analysis	of Vari	ance							
Y1 = 1.75 + 0.262 M	IP1						SOURCE		DF	SS	MS	F	Ρ			
							Regressi	on	1	0.506	0.506	0.18	0.6	673		
Predicator	Coef	Stdev	t-rati	o p	e.		Error		28	77.661	2.774					
Constant	1.7548	0.5959	2.94	0	.006		Iotal		29	/8.16/						
ND	0 26199	0.06	836 3.8	2 1	1 001											
1111	0.20133	0.000	50 5.0	· ·	1001		Unusual	Ohceru	ations							
6 - 1 252	P	24 49/	P	. (adi	- 22	10/	Ohs	Observ	IN.	Υ.	Fit	Stdev.	Fit	Residua	Ĕ	St. Resid
5 = 1.555	n - sq =	34.4%	n - 5	4 (au)	1 = 32.	1.76	3		840000	3.000	3.358	1.154	-0	.358	17 1	-0.30 X
							6		120000	8.000	3.824	0.305	4.	176		2.55R
Analysis of Varian	ce	10100000000		1.754		1.7840	10		840140	3.000	3.584	1.155	-0	.358		-0.30 X
SOURCE	DF	55	MS	F		P										
Regression	1	26.898	26.89	8 1	4.69	0.001	P donot	r an ol	ke With a l	area et	racid					
Error	28	51.269	1.831				X denote		bs. Whose	V uslue o	iesiu. iivos it lara	a influer				
Total	29	78.167					MTB > p	aper	US. WHUSE	V AURC E	ives it laig	e ninuei	ice.			
Unusual Observati	ons															
Obs. NP1	Y Fit	st.	dev. Fi	t. Resi	idual	St.Residual	MIB>N	egress	C8 1 C12							
5 11.0	1.000 4.	637 0	.324 -3.6	37		-2.77R	The regr	ession	equation is							
							Y ₁ = 5.8/	- 0.08								
R denotes an obs.	With a lar	ge st. re	sid.				Predicto		Coef St	tdev	t-ratio	Р				
MTB> paper.							Constant	5.	866 1.	204	4.87	0.0	00			
							AT1	-0.0	08611 0	.04952	-1.74	0.0	93			
MTB > regression	c8 1 c10															
The regression equ Y ₂ = 6.4S7 – 0.0926	ation is						S = 1.58	7	R-sq =	9.7%	R-sq (a	dj) = 6.5	5%			
Predictor Coef	Stdev	t-ratio	Р						12 (27 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)							
Constant 6.4652	0.8836	7.32	0.000				Analysis	or var	lance							
AA2 -0.09256	0.00967	-3.12	0.004				COURCE		DE				area.			
	3						Beereel	1997	DF	33	7.61		F 07	P 0.002		
S = 1 439	$R_{so} = 2^{\alpha}$	5 8%		R	n (adi	1 = 23 1%	Regressi	on	1	7.018	/.01	8 3	.02	0.095		
5 - 1.455	n-34 - 2.	3.070			od (ani	1-23.170	Error		28	70.54	9 2.52	0				
Analysis of Varian	ce						Total		29	/8.10	1					
	45-0						Unusual	Obs	ervations							
SOURCE	DF	SS	MS	F		P	Obs.	AT.	Y.	Fit	Stdev.	Fit.	Resi	dual	St. Re	sidual
Regression	1	20.163	20.163	9.7	73	0.0004	6	20.8	8.000	4.075	0.321	3.92	5		2.53R	8
Error	28	58.003	2.072				7	40.0	1.000	2.422	0.862	-1.42	2		-1.07)	C
Total	29	78.167					12	10.0	2.000	5.005	0.734	3.005	;		-2.13	xx
							R denote	s an ol	bs. With a l	arge st.	resid.	1245/19635	201		1000000	90 ¹
							X denote	s an ol	bs. Whose	X value e	ives it larg	e influer	nce.			

Considering Zone 2 which is Moduganari area, the analysis of the result is as follows

http://www.ijesrt.com

(C) International Journal of Engineering Sciences & Research Technology [1514-1523]

[Abdullah, 2(6): June, 2013]

ISSN: 2277-9655

MTB >	GOptions	:							MTB > r	egress o	1104	4				
SUBC>	Printer.								The regr	ession e	quati	ion is				
MTB> r	regress ci	1 4 c2 c3 c	4 c5						Y -= 3.64	- 0.000	OO IN	gorease. H				
The reg	ression e	quation is							17.401.6000							
Y ₂ = 3.64	4 + 0.138	NP ₂ -0.048	82 AA ₂ -0.0	00001 IN ₂	+ 0.0088	ATz			Predicto	r Co	ef	Stde	v	t-ratio	Р	
Dendist		Carl		Cadau		0 100			Constant	3.64	03	0.45	87	7.94	0.000	
Constan	or	2 620		1 056		1.00		0.000	NP	-0.000	0077	1 0 00	000787	.0.98	0 341	
LONSTAN	nt	0 129/2	,	1.950		1.80		0.088	1915	-0.000	00//-	1 0.00	000707	-0.50	0.341	
AA		0.0492	4	0.0051		1.00		0.219								
IN		0.0000	0114	0.00000	901	0.13		0.010	5 = 1.214	4 K-S	q = 6.1	1%	K-sq (adj)	= 0.0%		
AT		0.0007	7	0.00000	051	0.15		0.900								
AI		0.00677	8 1	0.03046		0.10		0.0/9	Analysis	of Varia	ance					
S= 1.22	0	R-sq = 2	24 <mark>.1</mark> %		R-sq (a	dj) = 0.0%			SOURCE	r)F	55	MS	F	P	
	ragrant of	11.2							Regressi	ion 1	10	1.427	1.427	0.97	0 341	
The rea	regress c.	untion in							Error	10		22 10	2 1 473	0.57	U.J.I	
V = 2.4	10 + 0 115	ND ND							Tatal	1		22,10	2 1,4/3			
1 2= 2.4	9 + 0.113	MP2							Iotal	1	6	23.529	ŭ.			
Predicto	or	Coef		Stdev		t-ratio		Р	Unusual	Observ	ations	5				
									Obs.	NP ₂	Y ₂	8	Fit	Stdev	.Fit. Residual	St.Resid
				0.5607				0.004	11	16.700	0 2.	000	2.347	1.007	-0.347	-0.51 X
Constan	nt	2.4944	0.11531	0.5687	1.02	4.39	0 1 17	0.001								
NP ₂			0.11521	0.0/128	1.62		0.127		V denote	ar an oh	e 14/h	NOFO V	value div	os it larne	influence	
S = 1.15	56	R-sq = 1	4.8%	R-sq (ad	i) = 9.2%				MTB> n	aner	5. VVI	IUSE A	Agine Ria	es it inige	e mnoence.	
		12042.0444.04							miles b	spen						
Analysi	s of Varia	nce														
SOURC	E	DF	SS	MS	F	Р										
Regress	sion	1	3.490	3.490	2.61	0.127										
Error		15	20.039	1.336												
Total		16	23.529													
Unurua	Obcanua	tions														
Ohs	NP	Y	Fit	Stdev	Fit Re	sidual	St Resid									
4	17.0	5.000	4.453	0.770	0.547	Jugar	0.63 X									
X denot	tes an obs	whose X	value give	es it large	influence	50										
MTB> p	oaper															
MTR	regress of	1.3														
The reg	ression er	mation is														
Y = 4.15	5 - 0.0286	AA														
Predicto	or	Coef	Stdev	t-ratio	Р											
Constan	nt	4.153	1.281	3.24	0.005											
NP		-0.0285	8 0.04145	-0.69	0.501											
S = 1.23	33	R-sq = 3	3.1%			R-sq (ad	ij) = 0.0%									
Analysi	s of Varia	nce														
SOURCE	E)	DE	66	MS	c	P										
Regress	sion	1	0 723	0.723	0.49	0 501										
Firm		15	22 806	1 520	0.40	0.301										
Total		16	23.529	21320												
MTB >	paper															

http://www.ijesrt.com

	1 401	c i venneu	an unp (su	uc 10 (cost) u	bbugui	aram nouse	noiu mitei vi	en Question	un c uutu	
S/N	No of	No of	Average	Destination	Age	Relative	Time of	Purpose	Car	Average
0	person in	person	age(yrs)			income of	travel	of	ownership	time
	household	trip				household		journey	-	
						per anum		5 5		
1.	10	5	19	p. office (3)	25	N39.610	30 min	Work	Nil	22.0
	-	-		BSMC	20		30 min	school		
					22	(5 EMP)	10 min			
					15	(*)	10 min			
					43		10			
2	11	6	17	Warlord	40	N21 800	50 min	Work	1	18.3
		0	- /	() difford	14	1.21,000	15 min	school	-	10.0
					13		10 min	5011001		
					12		10 1111			
					10					
3	13	3	17	Bama road	15	N84 000	30 min	School	1	26.7
5.	15	5	17	(2)	15	(3FMP)	30 min	Benoor	1	20.7
				(2) konduga	17	(JEIVII)	20 min			
4	6	1	24	Kurasha (2)	38	N150.000	20 min	Work	1	27.5
4.	0	4	24	Kwashe (2) M. markat	20	(2 EMD)	30 min	shop	1	27.5
				(2)	29	(2 EWIF)	30 min	shool		
				(2)	23 6		25 min	school		
5	11	1	27	T In time to d	0	N50.000	23 mm	Wl	1	20.0
5.	11	1	37	Unimid	57	N50,000	30 min	WORKS	1	30.0
6.	16	8	29	P. office (3)	67	N120,000	30 min	Per.Bus	N1l	20.8
				M. market	10		30 min	school		
				(4) Mass	19		10 min			
				L.G.A	22		25 min			
					25		30 min			
					29		30 min			
7.	5	1	42	Damaturu	42	N50,000	40 min	Works	NIL	40
				road						
8.	8	2	47	M. market	46		30 min	Shop	Nil	27.5
				baga road	47	N18,000	25 min			

 Table 1 Vehicular trip (state low cost)
 abbaganaram
 household interview Questionaire data

Table 1 cont. Vehicular trip (state low cost) abbaganaram household interview Questionaire data

				/	0					
S/NO	No of	No of	Average	Destination	Age	Relative	Time	Purpose	Car	Average
	person in	person	age(yrs)			income of	of	of	ownership	time
	household	trip				household	travel	journey	_	
		-				Per				
						Month				
9.	10	5	23	Bama. road	38	N37,000	35 min	Works	1	31.0
				Rm.poly (4)	25	(2 EMP)	35 min	school		
					18		35 min	school		
					22		35 min	school		
					12		35 min	school		
10.	3	3	36	P. office	51	N84,140	25 min	Works	Nil	25.0
					28	(3 EMP)	25 min	works		
					29		25 min	works		
11.	5	2	39	Wulari	40	N18,960	15 min	Works	Nil	22.5
				P. office	37		30 min			
12.	2	2	40	Shehu Pal.	42	N6,000	10 min	Works	Nil	10.0
				(2)	37	(2 EMP)				
13.	15	5	22	Govt. house	45	N120,000	30 min	Works	1	22.0
				P.office (2)	28	(2 EMP)	25 min	school		
				Bama road	13		25 min			
				(2)	11		30 min			
14.	12	5	22	Govt. house	43	N84,000	30 min	Works	1	27.0
				(2)	24	(2 EMP)	25 min	school		ĺ
				P. office (2)	12					ĺ

ISSN: 2277-9655

					7					
15.	5	2	30	Custom (1)	19	N30,000	10 min	Works	1	20.0
				P. office	40		30 min			
16.	8	2	17	El-kanem	43			Work	Nil	15.0
					14	N30,000	15 min	school		
					12					
					9					
					7					

Table 1 cont. Vehicular trip (state low cost) abbaganaram household interview questionaire data

S/NO	No of	No of	Average	Destination	Age	Relative	Time	Purpose	Car	Average
	person in	person	age(yrs)			income of	of	of journey	ownership	time
	household	trip				household	travel		_	
						Per				
						Month				
17.	10	4	19	Abba Gana	36	N12,660	15 min	School	1	18.8
				(3)	12		15 min	works		
					10		15 min	school		
				market	16		30 min	shop		
18.	8	5	29	Bama road	43	N50,000	30 min	Works	1	26.0
				(2)	33	(4 emp)	30 min	works		
				Damb.Rd.(2)	35		20 min	school		
					25					
				Bagg Rd ((1)	20					
19.	2	1	36	Bama road	36	N12,000	25 min	Works 1	Nil	25
20.	12	4	27	Bama Rd (3)	41	N39,000	25 min	Works	1	17.5
					28	(2 emp)	20 min	schools		
					9					
				P. office	11					
21.	7	5	21	Custom	38	22,022	10 min	Works	Nil	13.0
				FGC	30		25 min	school		
				MA T.H.	15		20 min	Work		
				FGC	13					
				Custom	9					
22.	10	5	28	Custom (2)	49	N15,000	10 min	Works	1	17.0
					18		29 min			
				P.off Mafoni	20		15 min			
				Shehu Place	19		10 min			
				MA,T.H	35		25 min			
23.	7	5	20	P. office	21	N17,735	25 min	School	Nil	25.0
				FGC	18		25 min	school		
				FGC	15		25 min	works		
				GRA	41		25 min	school		
				GRA	6					
24.	3	3	30	M market	45	N56,160	20 min	Shop	Nil	25.0
				moduganari	28	(2 emp)	30 min	socialRec.		
				P. office	17		25 min	pers. Bus		

Table 1 cont. Vehicular trip (state low cost) abbaganaram household interview Questionaire data

S/No	No of	No of	Average	Destination	Age	Relative	Time	Purpose	Car	Average
	person in	person	age(yrs)			income of	of	of	ownership	time
	household	trip				household	travel	journey		
						Per				
						Month				
25	6	5	22	Ram poly	20	N18,000	25 min	School	Nil	24.0
				(2 Bama	28		25 min			
				road(2)	21		25 min			
					24					
				GRA	28					
26	4	4	21	P. office	38	N60,000	25 min	School	Nil	25.0

				GRA	22		20 min	shop		
				market(2)	6		25 min			
					19		30 min			
27	10	5	23	M. market	24	N180,000	25 min	Shop	1	25.0
				Baga road	35	(4 EMP)	20 min	works		
				Bama	30		25 min	school		
				road(3)	11		30 min	school		
					13					
28	6	3	22	Damat.road	35	N72,000	30 min	Works	1	28.3
				Ram. Poly	25	(2 EMP)	25 min	school		
				Uninaid	6		30 min	school		
29	6	4	20	Fed Sec.	28	N42,096	30 min	Works	1	30.0
				El-kanemi	28	(2 EMP)	30 min	school		
				Coll.	8		30 min			
				Shehu Gar.	5		30 min			
30	7	3	34	State Sec.	32	N42,096	20 min	Works	Nil	23.3
				Ramat (2)	27		25 min	school		
					15		25 min	school		
	Total=.238	Total=115								

		Tuble	2. veineuru	i nip mouugu	nari nous	enoiu meervi	en questi	onun e uutu		
S/No	No of	No of	Average	Destination	Age	Relative	Time	Purpose	Car	Average
	person in	person	age(yrs)		-	income of	of	of	ownership	time
	household	trip	C 1			household	travel	journey	-	
		1				Per		5 5		
						Month				
1.	7	4	40	M. market.	62	N34.000	20 min	Shop	Nil	15
	-		_	Ahmadu B	26	, , , , , , , , , , , , , , , , , , , ,	10 min	school		-
				"	32		10 min	per Bus		
				Monday M			20 min	" "		
2	14	3	41	M market	50	N15.000	20 min	Shop	Nil	20
2.	14	5	-11	" "	35	1115,000	20 mm		1111	20
				"	37		"			
2	10	5	27	Domo D	41	N25.000	40 min	Works	NU	21
5.	10	3	27		41	N23,000	40 mm	WOIKS	INII	21
				TH Bocolls	28		15 min			
				Gvt. Cool	1/		10 min			
				Market	15		20 min			
					35					
4.	17	5	34	Pri H. Q.	45	N60,000	40 min	Works	Nil	26
				FGC	15		25 min	school		
				market	14		25 min	"		
				"	47		20 min	Shop		
				"	47			"		
				"						
5.	6	5	23	Unimaid	41	N28,080	35 min	School	Nil	33
				umarari	33	(2 EMP)	40 min	works		
				Baga Rd (3)	16		30 min	per Bus		
				C ()	14		"	other		
					12		"			
6.	7	3	33	Jaieri	27	N34.000	35 min	Per. Bus	Nil	26.3
	-	-		Market.	22		25 min	shop		
				"	50		"			
7.	8	5	22	State Sec.	34	N14.156	15 min	Works	Nil	12.5
	-	-		L. (state)	29	(2	15 min	"		
				Ram Poly	22	employ)	10 min	School		
				$Pri \Delta$	14	(inploy)	"	"		
				Bello	14					
8	4	4	23		40	N10.000	30 min	Work	Nil	23.7
0.	4	4	23	Daga K. Pfl.	40	1110,000	30 min	WOIK	INII	23.1

Table 2. Vehicular trip moduganari household interview questionaire data

P. office	28	15 min	school	
"	12	"	"	
Gwage R.	10	25 min	shop	

Table 2 cont. Vehicular tr	ip moduganari	household intervie	w questionaire data

S/No	No of person in household	No of person trip	Average age(yrs)	Destination	Age	Relative income of household Per Month	Time of travel	Purpose of journey	Car ownership	Average time
9.	7	2	16	Custom custom	27 11 9	N34,800	25 min "	Works Works	Nil	25
10.	10	12	14	central B.P office	43	N35,000	20 min 12 min	Works Works	Nil	17.5
11.	2	2	31	Baga R. P. office	35 27	N167,000 (2 EMP)	25 min 15 min	Works Works shop school	Nil	30
12.	6	3	42	Abba GRA "	32 28 65	N80,800	25 min "	School works	Nil	25
13.	4	2	30	Ramat poly K/Kasama	37 32	N50,000 (2 EMP)	10 min 20 min	Works school	Nil	15
14.	3	4	22	State Sec. L. state FGC	6 28 32	N31,200 (2 EMP)	15 min " 30 min	Works school " School	Nil	20
15.	4	4	27	T. Hosp. M market university	4 30 19 17	N84,440	25 min 20 min 30 min 20 min	Works works school School	Nil	23.8
16.	2	2	31	University Baga Road	27 34	N50,000	30 min 30 min	School work	Nil	30
17	7	2	29	custom market	27	N7,000	25 min 20 min	WORK	N11	22.5
	Total=117	Total=.56								

Conclusion/ Recommendation

The trip vehicular modeling which had been carried out in Maiduguri metropolis to study the trip making had been moderately achieved. This is due to fact that during the process of collecting data some of the information is bias. Sometimes the respondent would not give the exact amount of the income. These seriously affect the result, similarly the time of departure is just an approximated value by the respondent, because he is not assessing to time. Sometimes you may come across a particular

House where by the number of people present is high, but the trip making is law. In some instance, a house with high income but have tender the trip generated in that house. In computing an average value was considered and this will also affect the trip generated. For instance the time taking for person trip is taking has an average value in order to input the data in computer. The income is the total amount of

all the workers in that particular house which is input in the computer as the variable dependent of the trip. With all this reasons together with problem of fuel scarcity affect the result obtained by the regression. In state low cost the regression is $Y_1 = 5.34 +$ 0.237NP₁- 0.0741 AA₁- 0.000001 IN₁ - 0.0504 AT₁ and the regression square is 58.3% that is to say the relationship is just a little high than the average. The second equation in the second zone is $Y_2= 3.64 +$ 0.138 NP₂ -0.0482 AA₂ -0.000001 IN₂ + 0.0088 AT₂. The regression square is 24.1% which mean that the relationship is very low.

References

- [1] Baerwald, (1941),Associate Editors Transportation & Traffic and Hand Book
- [2] KEEPER L.E (1976), The institute of Traffic engineering Delhi India
- [3] Flaherty, C.A. (1983) , Highways and Traffic Engineering 2nd Edition Vol. I Edwar --- London
- [4] Hobbs F.D. (1973), <u>Traffic Planning 2nd</u> Edition
- [5] Kundiri A (1986), Control Traffic flow with aid of a grade separation (unpublished)
- [6] Mohammed A (1987), <u>Hand out on urban</u> and regional planning (-----)
- [7] Pignataro L.J. (1973), Traffic Engineering Theory & practicePrentice-Hall, Inc Engl----
- [8] Salter R.J (1974), Highway Traffic Analysis and Design 2nd edition (1980) London
- [9] Wright P.H. Paquent R.J (1974), Highway Engineering, 4ht edition New York, John Whiley & Sons